1 Kazimuro

Kkl Research Paper

  • 1.

    Rudraiah, N.; Barron, R.M.; Venkatachalappa, M.; Subbaraya, C.K.: Effect of a magnetic field on free convection in a rectangular enclosure. Int. J. Eng. Sci 33(8),1075–1084 (1995)CrossRefMATHGoogle Scholar

  • 2.

    Kefayati, G.H.R.; Gorji-Bandpy,M.; Sajjadi, H.; Ganji, D.D.: Lattice Boltzmann simulation of MHD mixed convection in a lid-driven square cavity with linearly heated wall. Scientia Iranica B. 19(4), 1053–1065 (2012)CrossRefGoogle Scholar

  • 3.

    Sheikholeslami, M.;Ashorynejad, H.R.; Domairry, D.; Hashim, I.: Investigation of the laminar viscous flow in a semi-porous channel in the presence of uniform magnetic field using optimal homotopy asymptotic method. Sains Malays. 41(10), 1177–1229 (2012)Google Scholar

  • 4.

    Khanafer, K.; Vafai, K.;Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46, 3639–3653 (2003)CrossRefMATHGoogle Scholar

  • 5.

    Sheikholeslami, M.; Ganji, D.D.: Heat transfer of Cu–water nanofluid flow between parallel plates. Powder Technol. 235, 873–879 (2013)CrossRefGoogle Scholar

  • 6.

    Ashorynejad, H.R.; Sheikholeslami, M.; Pop, I.; Ganji, D.D.: Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field. Heat Mass Transf. doi:10.1007/s00231-012-1087-6

  • 7.

    Abu-Nada, E.; Masoud, Z.;Hijazi, A.: Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int. Commun. Heat Mass Transf. 35, 657–665 (2008)CrossRefGoogle Scholar

  • 8.

    Soleimani, S.; Sheikholeslami,M.; Ganji, D.D.; Gorji-Bandpay, M.: Natural convection heat transfer in a nanofluid filled semi-annulus enclosure. Int. Commun. Heat Mass Transf. 39, 565–574 (2012)CrossRefGoogle Scholar

  • 9.

    Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.; Soleimani, S.: MHD natural convection in a nanofluid filled inclined enclosure with sinusoidal wall using CVFEM. Neural Comput. Appl. doi:10.1007/s00521-012-1316-4

  • 10.

    Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.; Soleimani, S.; Seyyedi, S.M.: Natural convection of nanofluids in an enclosure between a circular and a sinusoidal cylinder in the presence of magnetic field. Int. Commun. Heat Mass Transf. 39, 1435–1443 (2012)Google Scholar

  • 11.

    Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.; Rana, P.; Soleimani, S.: Magnetohydrodynamic free convection of Al2O3–water nanofluid considering Thermophoresis and Brownian motion effects. Comput. Fluids 94, 147–160 (2014)Google Scholar

  • 12.

    Mohamad, A.A.; Kuzmin, A.:A critical evaluation of force term in lattice Boltzmann method, natural convection problem. Int. J. Heat Mass Transf. 53, 990–996 (2010)Google Scholar

  • 13.

    Sheikholeslami, M.; Gorji-Bandpy, M.: Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field. Powder Technol. 256, 490–498 (2014)Google Scholar

  • 14.

    Ashorynejad, H.R.; Mohamad, A.A.; Sheikholeslami, M.: Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method. Int. J. Therm. Sci. 64, 240–250 (2013)Google Scholar

  • 15.

    Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.: Numerical investigation of MHD effects on Al2O3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM. Energy 60, 501–510 (2013)Google Scholar

  • 16.

    Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.: Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid. Powder Technol. 254, 82–93 (2014)Google Scholar

  • 17.

    Sheikholeslami, M.; Gorji-Bandpay, M.; Ganji, D.D.: Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid. Int. Commun. Heat Mass Transf. 39, 978–986 (2012)Google Scholar

  • 18.

    Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.; Soleimani, S.: Effect of a magnetic field on natural convection in an inclined half-annulus enclosure filled with Cu–water nanofluid using CVFEM. Adv. Powder Technol. doi:10.1016/j.apt.2013.01.012

  • 19.

    Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.; Soleimani, S.: Thermal management for free convection of nanofluid using two phase model. J. Mol. Liq. 194, 179–187 (2014)Google Scholar

  • 20.

    Sheikholeslami, M.; Ganji, D.D.; Ashorynejad, H.R.; Rokni, H.B.: Analytical investigation of Jeffery–Hamel flow with high magnetic field and nano particle by Adomian decomposition method. Appl. Math. Mech. Engl. Edn. 33(1), 1553–1564 (2012)Google Scholar

  • 21.

    Sheikholeslami, M.; Ashorynejad, H.R.; Domairry G.; Hashim, I.: Flow and heat transfer of Cu–water nanofluid between a stretching sheet and a porous surface in a rotating system. J. Appl. Math. 2012. doi:10.1155/2012/421320. Article ID 421320

  • 22.

    Sheikholeslami, M.; Ganji, D.D.; Ashorynejad, H.R.: Investigation of squeezing unsteady nanofluid flow using ADM. Powder Technol. 239, 259–265 (2013)CrossRefGoogle Scholar

  • 23.

    Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.; Soleimani, S.: Natural convection heat transfer in a cavity with sinusoidal wall filled with CuO–water nanofluid in presence of magnetic field. J. Taiwan Inst. Chem. Eng. doi:10.1016/j.jtice.2013.04.019

  • 24.

    Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.; Soleimani, S.: Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field. J. Mol. Liq. 193, 174–184 (2014)Google Scholar

  • 25.

    Sheikholeslami, M.; Gorji Bandpy, M.; Soleimani S.: Two phase simulation of nanofluid flow and heat transfer using heatline analysis. Int. Commun. Heat Mass Transf. 47, 73–81 (2013)Google Scholar

  • 26.

    Sheikholeslami, M.; Gorji Bandpy, M.; Ellahi, R.; Hassan, M.; Soleimani S.: Effects of MHD on Cu–water nanofluid flow and heat transfer by means of CVFEM. J. Magn. Magn. Mater. 349, 188–200 (2014)Google Scholar

  • 27.

    Kao, P.H.; Yang, R.J.: Simulating oscillatory flows in Rayleigh Benard convection using the lattice Boltzmann method. Int. J. Heat Mass Transf. 50, 3315–3328 (2007)CrossRefMATHGoogle Scholar

  • 28.

    Barrios, G.; Rechtman, R.; Rojas, J.; Tovar, R.: The lattice Boltzmann equation for natural convection in a two-dimensional cavity with a partially heated wall. J. Fluid Mech. 522, 91–100 (2005)Google Scholar

  • 29.

    Yan, Y.Y.; Zu, Y.Q.: Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder—a LBM approach. Int. J. Heat Mass Transf. 51, 2519–2536 (2008)Google Scholar

  • 30.

    Koo, J.; Kleinstreuer, C.: Viscous dissipation effects in micro tubes and micro channels. Int. J. Heat Mass Transf. 47, 3159–3169 (2004)CrossRefGoogle Scholar

  • 31.

    Koo, J.: Computational nanofluid flow and heat transfer analyses applied to microsystems. Ph.D Thesis, NC State University, Raleigh, NC (2004)Google Scholar

  • 32.

    Prasher, R.S.; Bhattacharya, P.; Phelan, P.E.: Thermal conductivity of nano scale colloidal solution. Phys. Rev. Lett. 94, 025901 (2005)CrossRefGoogle Scholar

  • 33.

    Jang, S.P.; Choi, S.U.S.: The role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 84, 4316–4318 (2004)CrossRefGoogle Scholar

  • 34.

    Sheikholeslami, M.; Ganji, D.D.; Gorji-Bandpy, M.; Soleimani, S.: Magnetic field effect on nanofluid flow and heat transfer using KKL model. J. Taiwan Inst. Chem. Eng. 45, 795–807 (2014)CrossRefGoogle Scholar

  • 35.

    Koo, J.; Kleinstreuer, C.: Laminar nanofluid flow in microheat-sinks. Int. J. Heat Mass Transf. 48, 2652–2661 (2005)CrossRefMATHGoogle Scholar

  • 36.

    Davis, G.D.V.: Natural convection of air in a square cavity, a bench mark solution. Int. J. Numer. Methods Fluids 3, 249–264 (1983)CrossRefMATHGoogle Scholar

  • Ее черный лоснящийся верх поднимался на двадцать три фута, а сама она уходила далеко вниз, под пол. Своей гладкой окружной формой она напоминала дельфина-косатку, застывшего от холода в схваченном морозом море. Это был ТРАНСТЕКСТ, компьютер, равного которому не было в мире, - шифровальная машина, засекреченная агентством. Подобно айсбергу машина скрывала девяносто процентов своей массы и мощи под поверхностью. Ее секрет был спрятан в керамических шахтах, уходивших на шесть этажей вниз; ее похожий на ракету корпус окружал лабиринт подвесных лесов и кабелей, из-под которых слышалось шипение фреоновой системы охлаждения.

    Leave a Comment

    (0 Comments)

    Your email address will not be published. Required fields are marked *